
A Script-Based Approach to
Modifying Knowledge Bases

Yolanda Gil and Marcelo Tallis

USC/Information Sciences Institute

March 1997

ISI/RR-97-453

^gMinTflPT80™'

19970702 074
IJgC; INFORMATION SCIENCES INSTITUTE

UNIVERSITY

OF SOUTHERN

CALIFORNIA

School of Engineering! 4616 Admiralty Way, Suite 1001
Marina del Rey, California 90292-6695/310 822 1511

' ftsrriülüTlÜM"3fÄTE^lgT_A

Approred for public release;
Distribution Unlimited

A Script-Based Approach to
Modifying Knowledge Bases

Yolanda Gil and Marcelo Tallis

USC/Information Sciences Institute

March 1997

ISI/RR-97-453

Will appear in Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), July 1997, Providence, Rhode Island.

PISTfiBUTION ST^TEMglf T

Approved for public release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE
FORMAPPROVED
OMB NO. 0704-0188

Public reoortinq burden for this collection of Information Is estimated to average 1 hour per response, including the «me for reviewing Instructions, searching exiting data
ruaiic repuruiiu uuiucn iiui yn■Yf"zz"zl.21 _ "-J-J ■ i-..__ „.i „,i^n «,« fniiaotinn n« InfnrmaHon Senrl nnmments reaanllnn this burden estimated or anv

Reports,
Washington, DC 20503.

i highway,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1997
3. REPORT TYPE AND DATES COVERED

Research Report

4. TfTLE AND SUBTITLE

A Script-Based Approach to Modifying Knowledge Bases

6.AUTHOR(S)

Yolanda Gil and Marcelo Tallis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 N. Fairfax Drive
Arlington, VA22203-1714

Organization of American States (OAS)
17th Street and Consitution Avenue
NW Washington, DC 20006

5. FUNDING NUMBERS

DARPA:
DABT63-95-C-0059

OAS:
PRA-F23779

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RR-97-453

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Will appear in Proceedings of the Fourteenth National Conference on
Artificial Intelligence (AAAI-97), July 1997, Providence, Rhode Island.

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFIED/UNLIMITED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Our goal is to build knowledge acquisition tools that support users in modifying knowledge-based systems.
These modifications may require several individual changes to various components of the knowledge base,
which need to be carefully coordinated to prevent users from leaving the knowledge-based system in an
unusable state. This paper describes an approach to building knowledge acquisition tools which capture
knowledge about commonly occurring modification sequences and support users in completing the modifi-
cations they start. These sequences, which we call KA Scripts, relate individual changes and the effects
that they have on the knowledge base. We discuss our experience in designing and compiling a library of
KA Scripts. We also describe the implementation of a tool that uses them and our preliminary evaluations
that demonstrate their usability.

14. SUBJECT TERMS

EXPECT, knowledge acquisition, knowledge acquisition scripts,
knowledge base maintenance, knowledge-based systems

15. NUMBER OF PAGES

16

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA -Task
WU -WorkUnit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
-Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

A Script-Based Approach to Modifying
Knowledge Bases

Yolanda Gil and Marcelo Tallis

USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu, tallis@isi.edu

ISI Technical Report ISI/RR-97-453

In the Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI-97), July 1997, Providence, Rhode Island.

Abstract

Our goal is to build knowledge acquisition tools that support users in modifying knowledge-
based systems. These modifications may require several individual changes to various components
of the knowledge base, which need to be carefully coordinated to prevent users from leaving the
knowledge-based system in an unusable state. This paper describes an approach to building knowl-
edge acquisition tools which capture knowledge about commonly occurring modification sequences
and support users in completing the modifications they start. These sequences, which we call
KA Scripts, relate individual changes and the effects that they have on the knowledge base. We
discuss our experience in designing and compiling a library of KA Scripts. We also describe the
implementation of a tool that uses them and our preliminary evaluations that demonstrate their
usability.

1 Introduction

The maintenance of knowledge-based systems remains a largely unresolved problem after
more than twenty years of research and practical experience in building knowledge-based
systems. After initial prototypes are developed, subsequent modifications are usually made
to detail and extend the knowledge base. Once the system is fielded, it would be extremely
rare if the knowledge-based system did not need to be maintained to adapt to the changes
that naturally happen in the world in which it works or to new requirements from its users.
The problem of modifying a knowledge-based system is arbitrarily hard. Some modifications
may involve complex restructuring or the introduction of large new portions that may be
equivalent to the effort of building a whole new knowledge base. Providing support for these
kinds of modifications will be very hard. But we should still be able to support modifications
that change some aspect of the reasoning or add new simple steps.

Research in the area of knowledge acquisition only partially addresses the issue. Some
tools allow users to populate a knowledge base with domain knowledge [Marcus and Mc-
Dermott, 1989, Eriksson et al, 1995, Puerta et a/., 1992, Runkel k Birmingham, 1993].
The kinds of changes that a user can make is limited to filling in the knowledge roles
determined by a predefined problem-solving method that the system uses. For exam-
ple, in a configuration system the user could define new components but would not be
able to change the configuration method to prefer certain configurations (e.g., cheaper
ones). More automated approaches for building knowledge-based systems use machine
learning and theory revision techniques [Langley & Simon, 1995, Pazzani & Brunk, 1991,
Ourston & Mooney, 1994]. However, they can only be used for some types of problems
(e.g., classification tasks). Other systems [Murray, 1996] can assist users in fixing the incon-
sistencies caused by the addition of the new knowledge to a knowledge base, but without
a problem-solving context in which the knowledge is used. Modifying a knowledge-based
system requires a coherent sequence of several individual changes to definitions, facts, and
methods that together compose the system. There is a need for tools that support users in
coordinating these changes and Carrying them out correctly.

We begin by describing the difficulties involved in supporting users as they modify
knowledge-based systems. Then we discuss our approach and our initial implementation
of a script-based tool that supports users in modifying a knowledge-based system. Our
scripts represent typical sequences of changes that users can apply in order to complete
modifications. Finally, we present the results of an evaluation that we conducted with sev-
eral users and discuss the value of this approach and our plans for future work. Although
this research is tied to our work within a particular framework for building knowledge-based
systems, the problems addressed are described with enough generality that other researchers
can benefit from our work. The paper also describes the specific features of this framework
that we found useful to support script-based approaches to knowledge acquisition.

2 Why Modifying Knowledge Bases is Hard

Consider an example from our experience with a knowledge-based system for transportation
planning. Suppose that the system calculates durations of trips involving only ships, and

1

that now it has to be extended to consider aircraft too. This modification to the knowledge
base involves several individual changes. First, existing knowledge may need to be modified.
The description of vehicles (which may be represented as a concept with attributes or roles)
has to be extended to include aircraft in addition to ships. The procedures (which may
be represented for example with rules) to calculate round trip time need to be changed
to take into account aircraft. New knowledge may also need to be added. For example,
new procedures to calculate the round trip time of aircraft need to be added. In all these
modifications, any new knowledge needs to be integrated with existing knowledge. The
distance traveled is used in the new procedure for the round trip time of aircraft and it is
also used in the already existing calculation for the round trip time of ships, so we need to
make sure that they use consistent estimates of the distance.

Notice that if the user makes only some of these changes the knowledge base will be left
in an incoherent state that will render it unusable because the system will not be able.to
solve problems. For example, suppose that the description of vehicles is extended to include
aircraft but that no procedures to calculate the round trip time of aircraft are added. The
system will no longer be able to estimate the duration of trips because it could not compute
the round trip time of its aircraft. Because several changes are required to different pieces
of the knowledge base, users can easily overlook some part of the overall modification and
end up with an incoherent knowledge base. There are several reasons why it is hard for a
user to complete the modification:

• Separate pieces of knowledge: The knowledge base is composed of many
individual pieces of knowledge that come together during the reasoning, and it is
hard to follow up on all of their interactions. We cannot use the unloading time
of an aircraft in a procedure if we have not added a definition of what it is and
specified its value for the different aircraft types.

• Maintaining compatibility of types: The arguments of expressions and the
types of their results need to be compatible with how they are invoked and used.
If speeds are specified in miles per hour then stopover times cannot be defined as
a number because unless the system knows what units we used to measure these
times it will not be able to add these quantities together correctly.

• Automatic inferences not directly observable: The interactions occur in
the results of system-made inferences which are not directly observable to the
user, such as class inheritance.

• Propagation of interdependencies: Modifications to a piece of knowledge
may affect other components of the knowledge base and as a result require ad-
ditional modifications. Furthermore, each of these additional modifications can
in turn originate the need for additional changes. It is hard for a user to track
down and to keep in mind all the modifications that are pending.

In sum, modifying a knowledge-based system often requires several individual changes
to various individual components of different nature that need to be carefully coordinated.
A good starting point is to build knowledge acquisition tools that find problems with the
knowledge base and alert users about them, and in fact, this is pretty much the kind of
support that a conventional compiler provides to programmers when they change their code.
But helping users notice the problems only partially addresses the issue. Ideally, our tools

should also support the user in resolving these problems by making suggestions about what
additional changes may be needed in the knowledge base. To do so, the tool needs to have
more context and some knowledge about the task that the user is trying to accomplish.

3 Our Approach: KA Scripts

Our approach is to equip knowledge acquisition tools with scripts that group many individual
changes to represent how overall modifications are accomplished. A Knowledge Acquisition
Script (or KA Script) is a prototypical sequence of changes together with the conditions that
make it relevant given the previous changes to a knowledge base. An example of a KA Script
is the creation of a new procedure that is similar to an existing one. It could be used to
create the procedure that computes the round trip time of an aircraft based on the one for
ships. The role of the knowledge acquisition tool is to help the user to resolve side-effects of
changes already made and complete the modification that he or she has started. To provide
this kind of support, a KA tool needs to have access to the following kinds of information:

• problems with the current knowledge base, which are indicative of what ad-
ditional knowledge needs to be acquired from the user. For example the fact that
the system is unable to calculate the round trip time of an aircraft indicates that the
tool needs to acquire some procedural knowledge to calculate it. These problems are
side-effects of previous changes. Possible problems with the knowledge base include
errors (something it knows about is wrong) and knowledge gaps (something is missing).
There may also be potential problems that need to be brought to the user's attention.
We will refer to all these as errors throughout the rest of the paper. The tool needs to
be able not only to detect errors, but also to identify the problem-solving context in
which they arise.

• a history of the changes made to the knowledge base to understand what the
user has been trying to accomplish with the modification. If the tool is aware that the
user has just changed a procedure to add two new calculations and there are no existing
procedures to calculate them, then it can have the expectation that, the user will define
these procedures (and vice versa). Without this knowledge of the user's past changes
the system would have a very myopic view of what is happening and suggest to the
user to change the procedure back to the way it was. This would certainly accomplish
the goal of taking the knowledge base back to a coherent state, but would not help the
user make progress towards his or her goals.

• a record of past versions of the knowledge base to understand how the individual
pieces of knowledge are supposed to come together. Suppose that the user initiates a
modification that changes the arguments of some procedure and as a result the system
cannot invoke it any longer. The system can use the past versions of the knowledge
base to figure out which other procedures need to invoke it and how, and use this to
help the user in completing the modification by updating those procedures.

For each problem in the knowledge base there may be several KA Scripts capable of fixing
it. The knowledge acquisition tool can suggest which KA Scripts can be applied, but only

KA Script to resolve error type "Goal G-new cannot be matched"

Applicable when:

(a) A change has caused an argument A of a goal G to

become more general, resulting in goal G-new

(b) Goal G was achieved by method M before A changed

(c) G-new can be decomposed into disjunctive subgoals Gl G2

(d) Gl is the same as G

Modification sequence:
CHOICE 1: Create new method M-new based on existing method

(1) System proposes M as the existing method to be used
as a basis. User chooses M or another method.

(2) System proposes a draft version of M-new that modifies
A to match G2. User can make any additional
substitutions needed in the body of M-new.

(3) User edits body of M-new if modifications other than
substitutions are needed.

CHOICE 2: Create new method M-new from scratch

Description of what this KA Script does:
Create a method that achieves goal G2 based on method M

Reasons why it is relevant to the current situation:
Method M was used before to achieve goal G, which was
generalized to become the unmatched goal G-new. Now
M can be used to achieve one of the subgoals in the
decomposition of G-new. M may be used to create a new method
that achieves the other subgoal in this decomposition.

Figure 1: A KA Script from our library.

the user has enough knowledge to decide which one is appropriate given the modification
that he or she has in mind.

Figure 1 shows one of our KA Scripts, which we will explain in more detail in the
next section. The error specified in a KA Script is a kind of problem that can appear in
the knowledge base and makes the KA Script applicable. These errors can be detected
automatically by analyzing whether the system can solve a specific task (e.g., calculating
roundtrip time). The applicability conditions describe conditions (other than the error) that
make the KA Script relevant to the situation. A short description and an explanation are
used to show users what the KA Script will do if they choose to use it, and why it is being
suggested by the system.

In designing KA Scripts, we took into account the following requirements to address their
usability:

• They need to be at the right level of generality in the advice provided. A suggestion
such as "Consider creating a new procedure for achieving the unmatched goal" is like
to be less useful to the user than "Consider generalizing the procedure to calculate the

round trip time for ships so it can be used for all vehicles". This does not mean that
the KA Script needs to be described in great detail and in fact they are often more
understandable when described in an abstract way.

• They need to be integrated with some basic knowledge acquisition tool and degrade
gracefully, so that if no KA Script applies to the current situation (or the user does
not want to use any of the applicable ones) then the user can still continue making
changes. Since it is unlikely that we can design KA Scripts for all possible strategies
that users can follow in changing a knowledge base, it would be too restrictive to force

users to use KA Scripts only.

• They need to be structured to prioritize errors and to sequence pending changes in
a way that makes the user's job easier. The errors can be prioritized because the
process of fixing one error will often fix other errors. The changes need to be ordered
so that they are presented to the user in a logical sequence that is easy to follow
and understand, instead of jumping around several fixes, which can interrupt the flow
continuously and make the user lose the thread of what he or she was doing. We also
noticed that often the way a user makes a change sheds some light on how he or she
may go about making other changes. So it is preferable to place earlier any changes
that can be analyzed to guide subsequent changes. At the same time, many temporary
errors can appear during a modification sequence and it is preferable that the user
follows the chosen KA Script and does not interrup it to fix another error.

To create our library of KA Scripts, we first did a thorough analysis of the kinds of general
changes and types of errors that could arise in using our baseline knowledge acquisition tool.
This analysis was done systematically by evaluating the effects of modifying every constituent
in the grammar used to represent knowledge in our framework. The result of this analysis
was the identification of all the possible error types and a set of KA Scripts for fixing them.
These KA Scripts cover all the situations in which a user can get when modifying a knowledge
base. However, our initial implementation showed that the guidance they provide to users
is very vague. The main problem is that they are very general and as a result they do not
make good use of the context available like previous modifications to the knowledge base or

of its specific contents.
We then analyzed several hypothetical (yet plausible) scenarios for modifying a knowledge

base. We looked at the changes that needed to be made, the errors that resulted from them,
and how subsequent changes repaired the errors caused by earlier changes. We analyzed
what kinds of advice would have been useful to users at each point, and determined what
information from the context was needed to generate the advice automatically. The result
of this effort was a set of KA Scripts that, though incomplete, were more specific to the
context and as a result provided more help to a user.

Finally, KA Scripts produced by both methods were combined in a a single library. There
is always some general KA Script in the library that applies to any situation. In situations
where there is a more specific KA Script that applies, the guidance provided will be more
specific to the context and more helpful. If not, we can fall-back on the general KA Scripts
because they cover all situations and provide more generic (but still helpful) guidance. The

result of this effort is a library of 75 KA Scripts that altogether address 23 types of errors
in the knowledge base.

Several interesting issues came up in constructing the KA Script library. Initially we
tried to organize KA Scripts by triggering them by user changes instead of errors. This
produced scripts that were very cumbersome, mostly because potentially any other script
was applicable at many points and it was hard to find a reasonable subset. Another approach
that was not successful was to invoke scripts within a script. This produced a high degree
of nesting and it would have been hard for users to follow what was happening. We also
realized that KA Scripts could not only remind users of the changes that remain to be done
but be useful checklists to help them keep track of the changes that they had already done.

KA Scripts are designed to be invoked after a user has performed some initial changes to
the knowledge base. However, if the user makes an arbitrary number of changes and then
turns to KA Scripts, it is hard to figure out how all the changes relate and provide helpful
guidance. We assume a paradigm where the system starts with a coherent knowledge base
(one that has no errors and can be used for problem solving), then the user makes a few
changes (ideally just one) and invokes the tool, which uses KA Scripts to help the user bring
the knowledge base back to a coherent state. Using an analogy with databases, we can view
the process of modifying the knowledge base as a sequence of transactions, where KA Scripts
support users by enforcing that transactions are completed so that the knowledge base is
not left incoherent.

4 ETM: EXPECT's Transaction Manager

Our implementation of a script-based knowledge acquisition tool is ETM (EXPECT's
Transaction Manager), a tool integrated with the EXPECT architecture for knowledge
acquisition. We introduce some aspects of EXPECT as we present an example knowl-
edge base and how ETM uses KA Scripts to guide users in modifying it. More details
about EXPECT can be found in [Gil & Melz, 1996, Swartout & Gil, 1995, Gil, 1994,
Gil & Paris, 1994].

EXPECT's knowledge bases contain factual domain knowledge and problem solving
knowledge. The factual domain knowledge represents concepts, instances, relations, and
the constraints among them. It is represented in Loom [MacGregor, 1991], a knowledge
representation system of the KL-ONE family. Problem solving methods are procedural de-
scriptions for achieving goals. They consist of 1) a capability that represents the goal that
the method can achieve, expressed with an action name and several parameters, 2) a method
body that describes the procedure for achieving the method goal in the capability, and 3)
a result type that specifies the type returned after elaborating the method body. Figure 2
shows examples from a simplified transportation domain. A vehicle is defined as a kind of
major equipment that has a speed and can be either a ship or an aircraft. The method M2
specifies that in order to calculate the duration of a trip by ship from a location to another
location we have to find the sailing distance between the locations and divide it by the speed
of the ship.

EXPECT can be given general goals, such as (calculate (obj (spec-of TRIP-DURATION))
(of (inst-of TRANSPORTATION-MOVEMENT))). General goals represent the kinds of goals that the

6

(defconcept VEHICLE
:is-primitive (:and HAJOR-EQUIPHEHT

(:the HAS-SPEED SPEED)
:disjoint-covering (SHIP AIRCRAFT))

(defconcept TRANSPORTATION-MOVEMENT
:is-primitive (:and TRANSPORTATION-DOMAIN-CONCEPT

(:the HAS-ORIGIN LOCATION)
(:the HAS-DESTINATION LOCATION)
(:the HAS-VOLUME-TO-HOVE TONS)
(:some HAS-AVAILABLE-LIFT SHIP)))

(def-expect-method Ml
(capability (calculate (obj (?t is (spec-of TRIP-DURATION)))

(of (?m is (inst-of TRANSPORTATION-MOVEMENT)))))
(result-type (inst-of ELAPSED-TIHE))
(body (pick (obj (spec-of MAXIMUM))

(of (calculate (obj ?t)
(by (HAS-AVAILABLE-LIFT ?m))
(from (HAS-ORIGIN ?m))
(to (HAS-DESTINATION ?m)))))))

(def-expect-method M2
(capability (calculate (obj (?t is (spec-of TRIP-DURATION)))

(by (?s is (inst-of SHIP)))
(from (?11 is (inst-of LOCATION)))
(to (?12 is (inst-of LOCATION)))))

(result-type (inst-of ELAPSED-TIME))
(body (divide (obj (find (obj (spec-of SAILING-DISTANCE))

(from ?11)
(to ?12)))

(by (HAS-SPEED ?s)))))

(def-expect-method M3
(capability (find (obj (?d is (spec-of SAILING-DISTANCE)))

(from (?11 is (inst-of LOCATION)))
(to (?12 is (inst-of LOCATION)))))

(result-type (inst-of LENGTH))
(body (if (or (unknown (obj ?11)) (unknown (obj ?12)))

then (ask-user (obj SAILING-DISTANCE) (from ?11) (to ?12))
else (look-up (obj (append ?11 ?12))

(in SAILING-DISTANCES-TABLE)))))

Figure 2: Some definitions of concepts and problem solving methods in a simplified trans-
portation domain.

system will be given for execution. EXPECT analyzes how to achieve these goals with the
available knowledge. EXPECT expands a goal by matching it with a method and then
expanding the subgoals in the method body. This process is iterated for each of the sub-
goals and is recorded as a derivation tree. Throughout this process, EXPECT propagates
the types of the arguments performing an elaborate form of partial evaluation supported
by Loom's reasoning capabilities. Using the derivation tree, EXPECT finds the interdepen-
dencies between the domain facts and the problem-solving methods, which are used by the
knowledge acquisition tool to detect errors or knowledge gaps in the knowledge base and
guide the user in resolving them. For example, the derivation tree will annotate that in
expanding M2 the speed of a ship is used. If a new ship is entered in the knowledge base and
its speed is unknown, this will cause an error and the knowledge acquisition tool will ask

the user to specify the speed. Other kinds of errors include goals that cannot be matched
by any method, undefined parameter types, and method result types that are incompatible
with what the method expansion actually returns.

Now suppose that the knowledge base in Figure 2 needs to be modified because the lift
available for transportation movements is no longer only ships but can be any kind of vehicle.
The available lift of a transportation movement needs to be changed from SHIP to VEHICLE.
This causes an error because some instantiations of the calculate subgoal of Ml have no
method matching them (the second parameter has changed to be of type VEHICLE). The user
then defines a new method M2-PRIME based on M2 by substituting SHIP by AIRCRAFT and
SAILING-DISTANCE by FLYING-DISTANCE and then adding the subgoal calculate to the method
body to calculate the time spent in stopovers. These modifications now cause two additional
errors: that the find and calculate subgoals of M2-PRIME cannot be matched. The user
defines a new method M3-PRIME based on M3 to resolve the former, and writes a new
method M4 for the latter. In summary, this overall modification required five individual
changes to different parts of the knowledge base.

The KA Script shown in the Figure 1 is relevant when the first error arises in our example
scenario. In this case, the goal to calculate a trip duration by ship (G) was generalized to
calculate the duration by a vehicle (G-new). This new goal can be decomposed into the
disjunctive subgoals calculate the duration for a ship and calculate the duration for an
aircraft (Gl and G2, where Gl is the same as G). Since M2 was the method used to match
the original goal, the KA Script proposes to create a new method based on M2. Figure 3
shows ETM's user interface when executing this KA Script. The current implementation
has ten of the KA Scripts in our library, enough to support the test scenarios described in
the next section. We are extending the system to include additional ones.

An important issue is the coordination of the execution of KA Scripts. We use a collabo-
rative framework, where ETM finds the errors in the knowledge base and the KA Scripts that
are relevant and the user decides which KA Script is most appropriate for the modification
he or she has in mind. The overall control loop for the execution of KA Scripts in ETM is
as follows:

User makes change(s) in the knowledge base
ETM identifies errors in the knowledge base
While there are errors in the knowledge base

ETM picks error e to be fixed and generates
set K of KA Script candidates k that can fix e

If the user does not choose any k
then user can quit ETM and fix e with EXPECT,

ETM can be invoked again anytime
else user chooses one k from the set K,

ETM helps user to apply k
ETM identifies errors in the knowledge base

Detecting which KA Scripts are applicable (including often several instantiations of a
same KA Script) is a task that can be done automatically. At any given time, there can be
many errors in the knowledge base and several KA Scripts may apply for each error. ETM
guides the user by suggesting KA Scripts that will resolve errors that occur earlier during

8

ixrrcr — KNowLipr.1 AIQUISIIION

Describe
Instances. \

Create a method that achieves:

(CALCULATE (OBJ (SPEC-OF BOUND-TRIP-TIME))
(OF (INST-OF AIRCRAFT))
(FROM (INST-OF LOCATION))
(TO (INST-OF LOCATION)))

Based on one of the following methods:

[calculate the round trip time of a ship from a location to a location)

(or any other method or from scratch)

Steps (execute them in order)

*Done**** 1. Choose method to be used as basis
["calculate the round trip time ■

| Execute [2. Create Method Analogous to the Basis

[Execute { 3. Edit Body of Analogous Method

1. Write method from scratch

Done
Abort,

W 1 II

Crest* Aftfctoaotts Method

jlCreating Method Analogous to

[calculate the round trip time of a ship from a location to a location]

jto achieve Goal

(CALCULATE (OBJ (SPEC-OF ROUND-TRIP-TIME))
(OF (INST-OF AIRCRAFT))
(FROM (INST-OF LOCATION))
(TO (INST-OF LOCATION)))

Steps (execute them in order)

1. Specify Global Substitutions for Capability || Exec

ship from a location to a location"]

I Execute j 2. Specify Global Substitutions for the Rest

3. Specify New Name

Method into the KB Execu I 4. Incorporate Analog

Done
Abort,

Method's Capability:

(CALCULATE
OBJ (?T IS (SPEC-OF ROOND-TRIP-TIME)))

(OF (?S IS (INST-OF SHIP)))
(FROM (?0 IS (INST-OF LOCATION)))
(TO (?D IS (INST-OF LOCATION)))

[Proposed Method's Capability;

(CALCULATE
(OBJ (?T IS (SPEC-OF ROOND-TRIP-TIME)))
(OF ___] is HINST-OF AIRCRAFT)!)
(FROM (?0 IS (INST-OF LOCATION)))
(TO (?D IS (INST-OF LOCATION)))

Cancel, Done

Figure 3: ETM's User Interface.

problem solving. When several KA Scripts are applicable for the same error, we leave the
choice up to the user, since the appropriateness of a choice may depend on information that
is not readily available to the tool (e.g., user's preferred strategy to modify knowledge bases).

5 Preliminary Evaluations

We conducted some preliminary evaluations of our work by comparing the performance
of several subjects using EXPECT and ETM with two different scenarios that required
modifying a knowledge base. Both scenarios used the same knowledge base (from a simplified
transportation domain), one of them (PAE) was slightly more complex than the other one
(RTT). The scenarios and tools were used by the subjects in different order so that the results
were not influenced by tiredness or increased familiarity with the domain. All of our users
were familiar with EXPECT (but not with ETM), and had some previous exposure to the
transportation domain. The subjects were first given some introductory material about the
tools, the domain, and the kind of task to be done and were given a chance to practice using
both tools. The experiment took several hours for each of the subjects, and we took detailed
transcripts of what they were doing during that time. We also instrumented the tools to
record the user's interactions, the errors in the knowledge base, and the time between each
modification. The table below shows some results of these evaluations.

RTT scenario PAE scenario
EXPECT ETM EXPECT ETM
S4 SI S2 S3 S2 S3 SI S4

Total time (min) 25 22 19 15 74 53 40 41
Time completing

transaction
16 11 9 9 53 32 17 20

Total changes 3 3 3 3 7 8 10 9
Changes made

automatically
n/a n/a 2 2 n/a n/a 7 8

The total time includes the time to understand the instructions for modification (which
is is comparable for all subjects in the same scenario), and the time between the first change
to the knowledge base and the completion of the transaction (i.e., to leave the knowledge
base in a coherent state and succesfully computing a given set of sample problems). Subjects
using ETM took consistently less time, the contrast is greater for the time to complete the
transaction and in the more complex scenario (PAE). Notice that the subjects were familiar
with EXPECT but not with ETM, which may be a factor in why some of them completed
the modifications using EXPECT in times comparable to ETM in the simpler scenario. We
expect the difference to be much larger in our future tests with users who are not familiar
with EXPECT. The table also shows the number of changes done automatically by the KA
Scripts, which may be one of the reasons why the subjects took less time with ETM.

It is interesting to note that in the longer scenario (PAE) both subjects using EXPECT
had forgotten to perform part of the modification specified in the instructions. To realize
that that was the cause for the wrong results that they got during the execution of the
sampe problems, and to revert that situation (which sometimes requiered to redo part of
the modification in a different way) took them considerable time. One possible explanation
of why subjects using ETM did not have that problem is that ETM gives step by step
guidance for modifying problem-solving methods, and relieves users from keeping track of
the pending changes, permitting the users to concentrate in the problem-solving method
being modified. In contrast with our experience with previous versions, users were able to
understand what the KA Scripts suggested and to follow the guidance that they provided in
completing modifications. Although ETM allows users to abandon the KA Scripts and use
EXPECT, none of our subjects decided to pursue this option.

6 Conclusions

We have described an approach to supporting users in modifying knowledge bases. The
approach is based on identifying typical sequences of changes to a knowledge base and
representing strategies (scripts) for carrying them out. These scripts allow the knowledge
acquisition tool to understand the consequences of each individual change made by the user
and provide support in completing the overall modification so that the knowledge base is
not left in an unusable state.

One important extension to our approach is to incorporate scripts to help the user in
starting modifications, not just completing them. In fact, three of our four subjects made
the comment that they would like help in figuring out where to start the modification.

10

These initiation scripts are similar to the programming cliches in the KBEmacs program
editor [Waters, 1985], which represent generic algorithmic fragments that programmers use
in writing code.

Our initial implementation and preliminary evaluations with users show promising re-
sults. We expect the benefits of KA Scripts to be greater for domain experts with no
previous exposure to EXPECT or the domain implementation. Our user interface needs
to be extended to provide visualizations and abstractions of the knowledge base as well as
on-line help.

There are several features that make the EXPECT architecture suitable for supporting
KA Scripts. EXPECT has explicit representations of all the knowledge in a knowledge-based
system. These representations can be examined by ETM to understand which pieces of
knowledge need to be changed. Other frameworks lack this kind of explicit representation,
either because they use first-order logic representations that blur important distinctions
among different types of knowledge, or because they hard-code some parts of the knowledge-
based system reasoning, such as problem-solving knowledge [Eriksson et a/., 1995]. Another
advantage of EXPECT is that it can analyze how generic goals (representative of the types
of tasks that the knowledge-based system is built for) are achieved. Other frameworks
lack this capacity, fording them to examine execution traces of specific problems that the
system was unable to resolve, where relevant information for debugging the knowledge base
is confounded in the details about that particular execution. Finally, EXPECT is built to
handle errors in the knowledge base. When it encounters an error during problem solving,
it generates a detailed description of how the error came about. It also has strategies for
recovering from the error by using other information from the current knowledge base. Most
systems are not built to handle faulty knowledge bases, often reporting errors that are both
hard to understand and hard to fix. We believe that these architectural features are not only
necessary to support KA Scripts, but also useful to address adequately the maintainance of
knowledge-based systems.

Acknowledgements

We would like to thank Kevin Knight, Eric Melz, and Andre Valente for their valuable
comments on this paper. Our special thanks to the past and present members of the EX-
PECT research group that patiently participated in our experiments, making possible the
evaluation of ETM reported here. We gratefully acknowledge the support of DARPA with
the contract DABT63-95-C-0059 as part of the DARPA/Rome Laboratory Planning Initia-
tive. The second author was partially supported by the Organization of American States
fellowship PRA-F23779

References

[Eriksson et ah, 1995] Eriksson, H.; Shahar, Y.; Tu, S. W.; Puerta, A. R.; and Musen,
M. A. 1995. Task modeling with reusable problem-solving methods. Artificial Intelligence
79(1995):293-326.

11

[Gil & Melz, 1996] Gil, Y., and Melz, E. 1996. Explicit representations of problem-solving
strategies to support knowledge acquisition. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence.

[Gil & Paris, 1994] Gil, Y., and Paris, C. 1994. Towards method-independent knowledge
acquisition. Knowledge acquisition 6(2):163-178.

[Gil, 1994] Gil, Y. 1994. Knowledge refinement in a reflective architecture. In Proceedings
of the Twelfth National Conference on Artificial Intelligence.

[Langley & Simon, 1995] Langley, P., and Simon, H. A. 1995. Applications of machine
learning and rule induction. Communications of the ACM 38(11).

[MacGregor, 1991] MacGregor, R. 1991. The evolving technology of classification-based
knowledge representation systems. In Sowa, J., ed., Principles of Semantic Networks:
Explorations in the Representation of Knowledge. San Mateo, CA: Morgan Kaufmann.

[Marcus and McDermott, 1989] Marcus, S., and McDermott, J. 1989. SALT: A knowledge
acquisition language for propose-and-revise systems. Artificial Intelligence, 39(l):l-37.

[Murray, 1996] Murray, K. S. 1996. KI: A tool for knowledge integration. In Proceedings of
the Thirteenth National Conference on Artificial Intelligence.

[Ourston & Mooney, 1994] Ourston, D., and Mooney, R. J. 1994. Theory refinement com-
bining analytical and empirical methods. Artificial Intelligence 66:311-344.

[Pazzani & Brunk, 1991] Pazzani, M. J., and Brunk, C. A. 1991. Detecting and correcting
errors in rule-based expert systems: an integration of empirical and explanation-based
learning. Knowledge acquisition 3(2):157—173.

[Puerta et al, 1992] Puerta, A. R.; Egar, J. W.; Tu, S. W.; and Musen, M. A. 1992. A
multiple-method knowledge-acquisition shell for the automatic generation of knowledge-
acquisition tools. Knowledge Acquisition 4(2):171—196.

[Runkel & Birmingham, 1993] Runkel, J. T., and Birmingham, W. P. 1993. Knowledge
acquisition in the small: Building knowledge-acquisition tools from pieces. Knowledge
acquisition 5(2):221-243.

[Swartout & Gil, 1995] Swartout, B., and Gil, Y. 1995. EXPECT: Explicit Representations
for Flexible Acquisition. In Proceedings of the Ninth Knowledge-Acquisition for Knowledge-
Based Systems Workshop.

[Waters, 1985] Waters, R. 1985. The programmer's apprentice: A session with kbemacs.
IEEE Transactions on Software Engineering 11(11):1296—1320.

12

